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The phase diagram and metal distribution of the (Cr,Ti,-,bSe4 system were studied by X-ray, neutron 
diffraction, and DTA measurements. The metal distribution of M’M& with the Cr&-type structure, 
which was estimated from the composition dependence of lattice parameters in the solid solution 
(M~M,&X, system, was in good agreement with results from other measurements such as neutron 
diffraction and Massbauer effect. 8 1985 Academic press, IX. 

Introduction X and X (van der Waals gap) are also occu- 
pied, i.e., MfXM;,2XMf . . . 1 (Mv denotes 

In the binary M-X system (M = 3d tran- metal ions in half-filled metal layers), and 
sition metal, X = S, Se, Te), there appear moreover Mv is regularly arranged (va- 
many compounds such as MX, M3X4, cancy-ordered structure). Therefore, there 
MzX3, MsXS, MX2, etc. Among them, the are two sites (Mf and M”) for metal ions in 
M3X4 compounds with the Cr&-type struc- the Cr&-type structure. Hereafter we use 
ture interest us in their chemical and physi- the notation (M)[M2]X4 in order to indicate 
cal properties. The Cr&-type structure can the metal distribution. 
be derived from the Cd12 type as follows. In the mixed-metal compounds M’MzX4 
Anion packing is hcp, and in the CdIz-type with the Cr$S4-type structure, the site pref- 
structure octahedral holes in the alternative erence of each metal ion is interesting. 
layers are fully occupied by metal ions, i.e., Chevreton et al. (1-3) synthesized M’M& 
the layer stacking along c-axis is MfXXMf compounds with the Cr3S4-type structure 
xx * . * (Mf denotes metal ions in fully 
occupied metal layers). In the Cr$S4-type 
structure, half of octahedral holes between 

’ The ratio of the site number N&NMr = 4 is impor- 
tant to discuss the metal distribution. 
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and Andron et al. (4-6) determined the fol- 
lowing metal distributions by neutron dif- 
fraction: OWWSe4 (no~4 (41, 
(Ni)[Cr2]S4 (normal) (5), (Cr)[CrTi]Te4 (in- 
verse) (6).2 Recently, Kawada and Wada 
(7) determined the distribution in 
(Fe)[V2]S4 (normal) by TOF neutron dif- 
fraction. Nozaki et al. (8) tried to deter- 
mine the metal distribution of VFe2S4 by 
57Fe Mossbauer effect measurements; 
(Fe)[FeV]& (inverse). 

Oka et al. (9) discussed the general phase 
diagram of the M-X system from the view 
point of the statistical thermodynamics. 
According to these results, an i&X4 phase 
with the Cr&-type structure should show 
the successive phase transitions: Cr& + 
Cd12 --, (NiAs) type structures on heating, 
as has been confirmed in many systems 
such as V-S (IO), V-Se (IO), Cr-Se (II), 
Fe,VS2 (I2), and Cr,TiSez (13). 

In this paper, we report a phase diagram 
of the (Cr,Til-&Se4 system and the site 
preference of the metal ions, as part of a 
series of investigations of phase diagrams 
and physical properties of (M~MiJ~X4 sys- 
tems (M’, M = 3d transition metal). 

Experimental 

Samples were synthesized by the direct 
reaction from high-purity elements Ti (3N), 
Cr (3N), and Se (5N). The weighed mix- 
tures were ground, pressed and sealed in an 
evacuated silica tube, and heated at 800°C 
for 1 week. The samples were reground and 
reheated at 800°C for 1 week, and then an- 
nealed at 300°C for 2 weeks and quenched 
in ice water. The phase characterization 
was made by powder X-ray diffraction 
methods. The phase transition at higher 
temperature was detected by high-tempera- 
ture X-ray diffraction in situ and also by 

2 For M’M,& compounds with the Cr&-type strut- 
ture, Chevreton and Andron (4) defined the “normal” 
and “inverse” as (M’)[M& and (M)[MM’l-&, re- 
spectively. 

0 0.2 0.L 0.6 0.0 1.0 
x in ICrxTiq-x&e, 

FIG. 1. Phase diagram of the (Cr,Til+,)$3e4 system. 
M& type refers to the Cr&-type structure. The tem- 
perature of the phase transition was measured by DTA 
on heating. 
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FIG. 2. Composition dependence of lattice parame- 
ters of the (Cr,Ti,-J3Se4 system at room temperature. 
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DTA measurements. Powder neutron dif- 10°C. The order of phase transition seems 
fraction study was done at room tempera- to be first order, very close to second order. 
ture with the double-axis neutron diffrac- Figure 2 shows the dependence of the lat- 
tometer installed at Kyoto University tice parameters (a, b, c, j3) on composition 
(KUR). in (Cr,Til-&Se4 at room temperature. The 

figure clearly shows the deviation from Ve- 
gard’s law, and a gradient change in the 

Results and Discussion 
composition vs lattice parameter curves at 
the composition x = g (CrTizSeJ. These 

Figure 1 shows a phase diagram obtained results reflect the nature of the metal distri- 
for (Cr,Ti,-J3Se4 up to 1000°C. The phase bution. Previously, it was shown (14, 15) 
transition from the Cr&- to Cdktype that the (Mn,Fel&04 system with the 
structure corresponds to the disordering of spine1 structure shows a similar change in 
Mv ions or metal vacancies in the layers. the lattice spacings da0 at MnFez04 (x = 4). 
The hysteresis of the phase-transition tem- The pseudobinary solid solution M$X,- 
perature Tt measured by DTA is about M3X4 or (MiMI-J3X4 involves substitution 

INVERSE 
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LA 

CrTi2Se~ Cobs.1 C (d) 

FIG. 3. Calculated (a-c) and observed (d) powder neutron diffraction patterns of CrTi2Se4 (A = 1.006 
4. 
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of M’ for M. The possible types of substitu- 
tion, which reflect the site preference (Mf 
or M”) of each ion, are 

(4 (M&MI -3x)[M2x4 OSXC=Q 

W’m4~x-I~3-3*1x4 g5,5 1 

03 (1M)[&M2-3xK4 05x5$ 

(M;x-2M3-3.r)[%.1x4 $5x: 1 
(c) (M:Ml-x)[MirM2-2~~4 05x5 1 

In case (A), M’ prefers to occupy Mv 
sites up to x = f, but over x = 9, M’ is 
obliged to occupy Mf sites because the M” 
sites are fully occupied by M’. Conversely 
h4 prefers to occupy Mf sites. In case (B), 
M’ and M prefer to occupy Mf and MV sites, 
respectively. In case (C), M’ and M have no 
preference for either of the crystallographic 
sites. 

“Normal” or “inverse” as defined by 
Chevreton and Andron (4) has meaning 
only at x = + or 8 in both cases (A) and (B). 
The composition x = 4 for case (A), 
(M’)[M2]X4, and x = 6 for case (B), 
(M)[M$Y4, are turning points, because 
over these composition M’ starts to substi- 
tute for M in new sites, Mf and M”, respec- 
tively. 

The site preference type “normal” or 
“inverse” or “random” can be estimated 
by measuring the composition dependence 
of lattice parameters. In case (A), an anom- 
alous change in the composition vs lattice 
parameter curves around x = 6 indicates the 
compound M’M2X4 belongs to the normal 
(M’)[M2]X4 type and MiMX4 to the inverse 
one. In case (B), an anomalous change 
around x = Q indicates the compound 
M’M2X4 belongs to inverse (M)[MM’]x4 
type and the compound MiMX4 to the nor- 
mal one. In case (C), there would be no 
anomalous change in the curves. 

As shown in Fig. 2 (Cr,Tii-,)3Se4 has a 
turning point around x = a. This suggests 
that Cr ions prefer to occupy the M’ site 
and that CrTi,Se, belongs to normal 
(Cr)[Ti2lSe, type. In order to confirm this, 

TABLE I 

INTENSITY OF NEUTRON DIFFRACTION FOR 
PATTERNS CALCULATED (NORMAL, RANDOM, AND 

INVERSE MODEL) AND OBSERVED 

Line 
group 

Calculated 

Normal Random Inverse Observed 

A 12 0 3 13 
B 55 63 62 58 
C 100 100 100 100 
D 11 12 12 14 
E 19 21 21 25 
F 37 34 35 38 
G 77 84 83 78 

* See Fig. 3d. 

a powder neutron diffraction study on 
CrTizSe4 was done. In Fig. 3 the bottom (d) 
shows the powder neutron diffraction data, 
and for comparison the top (a) to the third 
(c) show the calculated intensity for nor- 
mal, random, and inverse type, respec- 
tively. The peak resolution in the observed 
diffraction pattern is not enough to com- 
pare the calculated intensity with the ob- 
served one for each line. So the observed 
diffraction lines were grouped (A, B, * . * 
G as shown in Fig. 3d) and compared with 
the calculated intensity. The results in Ta- 
ble I confirm the normal type, (Cr)[TiJSe4, 
in accord with the estimation from the com- 
position vs lattice parameter curves. 

Here we show a couple of other exam- 
ples. The composition dependence of lat- 
tice parameters for (Fe,Vi-,)& (26), 
clearly shows a gradient change around x = 
4 (FeV2S4). This suggests that the substitu- 
tion mode belongs to type (A), i.e., 
(Fe)[V2]S4 (normal) and (Fe)[FeV]& (in- 
verse). These were confirmed by neutron 
diffraction (7) and Mossbauer effect mea- 
surements (8), respectively. Figure 4 shows 
the lattice parameter change in the (Cr, 
Tt1-,)3Te4 system.3 This suggests that the 
substitution mode also belongs to type (A), 
i.e., (Cr)[Ti2]Te4 (normal) and (Cr)lCr 

3 The study of this system, including some physical 

properties, is now in progress. 
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FIG. 4. Composition dependence of lattice parame- 
ters of the (CrxTil-,)STe4 system at room temperature. 

Ti]TeA (inverse). Andron er al. (6) 
have determined the metal distribution 
to be inverse, (Cr)[CrTi]Te,, by neutron 
diffraction. Note that the Cr ion prefers to 
occupy the M” sites in both (CrxTii-J3X4 
systems (X = Se or Te). It is likely that the 
site preference of metal ions M’ depends 
only on partner metal ions M, regardless of 
anion. 

The composition dependence of lattice 
parameters in (MiM1-J3X4 systems with 
Cr&-type structures gives us the informa- 
tion about the substitution modes (A), (B), 
(C), from which we can guess “normal” or 
“inverse” or “random” distribution of 

metal ions for compounds M’MzX4 or 
M$MXd . 

Phase diagram and metal distribution 
study on all possible (M:MI&X4 sys- 
tems with the Cr&-type structure are now 
in progress, together with complementary 
studies using neutron diffraction, Moss- 
bauer effect, nuclear magnetic resonance, 
magnetic susceptibility measurements, etc. 
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